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Two Complementary Approaches to Transonic
Potential Flow About Oscillating Airfoils

H. Schippers* and M. H. L. Hounjetf
National Aerospace Laboratory, Amsterdam, The Netherlands

Results of two-dimensional (2D) unsteady transonic full-potential flow calculations for AGARD standard
aeroelastic configurations are presented and compared with experimental data. Two complementary methods
have been applied: 1) the time-integration TULIPS method, and 2) the time-linearized FTRANC method. The
calculations have been performed for the NACA 64A010 (Ames) airfoil and for the supercritical NLR 7301
airfoil, both undergoing sinusoidal pitching oscillations. The results of both methods are in good agreement, and
the comparison with experimental data is fair.

Introduction

AT the National Aerospace Laboratory (NLR), continuous
attempts are being made to improve the accuracy of com-

putational methods for unsteady airloads in transonic flow.
Having already various transonic small-pertubation (TSP)
methods available, recently two full-potential methods have
been developed for two-dimensional (2D) unsteady transonic
flow about oscillating thick blunt-nosed airfoils in which the
time parameter is used in different ways: 1) the time-accurate
integration method, TULIPS (Transonic Unsteady Lifting
Inviscid Potential-Flow Simulation), and 2) the time-lin-
earized method, FTRANC (Full-Potential Transonic Analysis
on C-type Grids). Each of these methods is subject to various
kinds of modeling errors, which have a different influence on
the numerical results. For moderate frequencies, it can be
shown that the time-integration methods yields more accurate
results; for low frequencies, the results of the time-linearized
method are more accurate. In this way, the methods are
complementary in the frequency range. When the numerical
results of these methods compare well, they may be considered
from a numerical point of view as being reliable. The purpose
of this paper is twofold: 1) to introduce and to describe the
aforementioned methods, and 2) to supply high-quality
calculated, full-potential aerodynamic data for two airfoils in
transonic flow that are recommended as standard aeroelastic
configurations by AGARD. Finally, it is demonstrated that
results of these full-potential methods compare satisfactorily
with experimental data.

Computational Methods
The TULIPS and FTRANC computational methods solve

the unsteady full-potential equation on a boundary-conform-
ing C-type grid. The time-accurate integration method,
TULIPS, was developed at NLR to provide high-quality solu-
tions that can be used to establish the limits of applicability of
the transonic small-perturbation methods and of the time-lin-
earized method, FTRANC. The latter method solves the un-
steady full-potential flow about a harmonically oscillating
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airfoil by calculating a mean steady potential and its first
harmonic component.

Description of TULIPS
TULIPS, the time-integration method, is based on the

numerical integration of the unsteady full-potential equation.
The equation is discretized in space by applying a fully
conservative finite-difference scheme utilizing Godunov flux
splitting to maintain stability in the supersonic flow region.
The present scheme yields numerical solutions with sharp
compression shocks and rules out expansion shocks. The
application of the Godunov flux splitting has been discussed
in detail in Ref. 1. After the spatial differencing has been
carried out, there results a large system of ordinary differential
equations, which is integrated in time applying a first-order
fractional step method. The obtained velocity potential con-
tains an integration error of O(kt/k), i.e., for a fixed time
step Af , the contribution of the time-integration errors in-
creases as the reduced frequency k decreases.

At the outer boundary of the C-type grid, a first-order
boundary differential equation is applied, which has been
derived in Ref. 2, following the approach of Bayliss and
Turkel.3 This numerical boundary condition simulates the
radiation of energy out of the computational domain and
toward infinity.

Description of FTRANC
FTRANC, the time-linearized method, solves the transonic

flow about an oscillating airfoil. The velocity potential is
decomposed into a mean steady potential and its first harmonic
component, which are determined from appropriate differen-
tial equations and boundary conditions. The higher harmonic
components are neglected. In time-linearized methods, it is
usual to define the mean steady potential by the steady
potential at the mean position, as was applied in Refs. 4 and
5. This choice suffices if the nonlinear effects are small, as
occurs for subsonic flow at low Mach numbers, for supersonic
flow at high Mach numbers, and for transonic flow with a
small shock trajectory. When nonlinear effects become more
important, the steady potential at the mean position is no
longer appropriate for the accurate calculation of the first
harmonic components. In particular, it cannot represent flows
with large shock excursions, which would result in an erro-
neous calculation of the first harmonics. It appears that the
time-linearized approach fails for these types of flow. In this
paper, however, it is established that it still can give reason-
able results for genuine nonlinear transonic flow, provided the
mean steady potential is defined as a weighted average of
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steady potentials at TV different amplitudes a,, given by

/=!,..., TV (1)

The steady potentials, denoted by (#,, follow from solving TV
steady potential-flow problems governed by

with boundary condition

0

Then, the mean steady potential is defined as
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lv E

(2)
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which can be considered as an approximation to the mean
steady potential that would have been obtained for reduced
frequency k = 0. In general, this potential differs from the
potential at the mean position because Eqs. (2) and (3) are not
satisfied there.

Next, the unsteady full-potential equation is time-linearized
about 9°. This yields a linear second-order hyperbolic equa-
tion for the disturbance potential i//, which is resolved into a
harmonic series

, y, t) = , y) + tf(x, y) elt , y) e2

(5)

The disturbance potential xp1 can be considered as an
approximation to the first harmonic component of the velocity
potential. The thus obtained solution is free of numerical
integration errors but still contains a truncation error due to
taking the mean steady potential at reduced frequency k = 0
instead of the actual value of k, which is expected to be of
0(k).

The differential equations are discretized using the finite-
volume method of Ref. 6. For the capture of shocks,
Engquist-Osher flux splitting is applied. The nonlinear equa-
tions for the mean steady flowfield are solved by using a
Newton procedure and a two-level method. The extent of the
grid is reduced by using a field panel method on a coarse grid
to obtain nonreflective far-field boundary conditions on the
fine grid. This two-level method has been described in detail
in Ref. 6.

Comparison of Numerical Results
Results of unsteady transonic calculations are presented for

two AGARD standard configurations: 1) the NACA 64A010
(Ames) airfoil at M^ = 0.796, a = -0.1 deg, Aa = 1 deg, and
2) the NLR 7301 airfoil at M^ = 0.721, a = -0.19 deg, and
Aa = 0.5 deg. The geometries have been taken from Ref. 7.
The unsteady motion of the NACA 64A010 airfoil is pitching
about the quarter-chord position, while the motion of the
NLR 7301 airfoil is pitching about the 0.4 chord position.
More results have been generated and compared for thick
blunted airfoils in subsonic flow for values of a up to 20 deg
and for values of A: up to 1, which proved to be in excellent
agreement. These results are not included here.

The unsteady TULIPS results have been obtained using 600
time steps per cycle of oscillation. The unsteady FTRANC
results are based on a mean steady flowfield constructed by
averaging five steady flowfields at angles of attack a = a,
a ± JAa, and a ± Aa. The calculations are carried out on a
104 X 24 C-type grid (72 segments on the airfoil) extending
about 10-15 chords away from the airfoil. Such a small extent
is sufficient because appropriate far-field boundary conditions
are applied.

NACA 64A010 Airfoil
Figures 1 and 2 show results of calculations at the reduced

frequencies of k = 0.05 and 0.2, respectively. A good overall
agreement can be observed. Small but significant differences
appear at the shock trajectory, particularly in the mean steady
pressure distribution and in the real part of the first harmonic
component. Inspection of the figures reveals that the shock
locations deviate more as the frequency increases. This could
be expected because the mean steady flowfield of FTRANC,
being the same for all unsteady calculations, refers to the
reduced frequency k = 0 (i.e., quasisteady flow). Table 1 gives
the comparison of the unsteady lift and moment coefficients at
k = 0.05, 0.01, and 0.20. The correlation is satisfactory.

NLR 7301 airfoil
In Fig. 3, the results of both methods are given for the NLR

7301 airfoil pitching about 0.4 chord in its supercritical de-
sign condition: A: = 0.068. Qualitatively, the TULIPS and
FTRANC results agree. In the subsonic region on the lower
side, the results are in good agreement, but in the supersonic
region on the upper side the results differ significantly. The
cause is probably FTRANC, which cannot predict the shock
excursions accurately enough. In Table 2, the unsteady lift
and moment coefficients are presented at k = 0.068 and 0.181.
It appears that the real parts of the lift coefficient are in good
agreement, particularly for the low-frequency case k = 0.068.
However, the other coefficients deviate substantially.

Reliability
The satisfactory correlation for the NACA 64A010 airfoil

shows that both methods are equally well able to calculate
unsteady transonic flow, which is dominated by the effect of
shock displacement. Such a type of flow leads to a shock
doublet in the unsteady pressure distribution, which is calcu-
lated by both methods with obviously similar results. The
resemblance improves as the frequency decreases, which could
be expected because the results of FTRANC involve trunca-

COMPARISON OF TULIPS AND FTRANC
NACA64A010 AMES, K = 0.05, PITCHING .25C
MACH = 0.796, ALPHA =-0.10 (deg), DALPHA = 1.0 (deg}

0.90-
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Fig. 1 Comparison of calculated distributions of pressure coefficients
of the NACA 64A010 (Ames) airfoil for reduced frequency k = 0.05.
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COMPARISON OF TULIPS AND FTRANC
NACA64A010 AMES, K = 0.20, PITCHING .25C
MACH =0.796, ALPHA =-0.10 (deg), DALPHA =1.0 (deg)

TULIPS (NT =600)

FTRANC (5-P AVERAGE)

0.90-
-CPL
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Fig. 2 Comparison of calculated distributions of pressure coefficients
of the NACA 64A010 (Ames) airfoil for reduced frequency k = 0.20.

Table 1 Comparison of first harmonic components of lift and
moment coefficients, NACA 64A010 (Ames) airfoil

k
0.05

0.10

0.20

Method

TULIPS
FTRANC

TULIPS
FTRANC

TULIPS
FTRANC

k'
3.02
3.14

2.36
2.26

1.74
1.67

k"
-1.80
-1.62

-1.34
-1.32

-0.85
-0.85

m'

0.47
0.49

0.38
0.41

0.39
0.44

m"
-0.16
-0.11

0.00
0.01

0.18
0.19

Table 2 Comparison of first harmonic components of lift and
moment coefficients, NLR 7301 airfoil

k
0.068

0.181

Method

TULIPS
FTRANC

TULIPS
FTRANC

k'
2.74
2.73

1.78
1.84

k"
-1.42
-1.19

-1.00
-0.85

m'

0.14
0:03

0.30
0.24

m"

0.20
0.24

0.31
0.43

tion errors, due to taking the mean steady flow at reduced
frequency k = 0 instead of the actual value of k. For the NLR
7301 airfoil, the correlation is less satisfactory. It appears that,
at the supercritical design conditions, the flow is dominated by
strongly nonlinear effects, such as considerable changes in the
pressure distribution in the supersonic region at the upper side
of the airfoil. It is likely that these nonlinear effects cannot be
modeled accurately by the time-linearized FTRANC method.
On the other hand, the time-integration TULIPS method has
no limitations to cope with this type of nonlinear flow. There-
fore, having observed a satisfactory resemblance for the NACA
64A010 airfoil, it is plausible to state that TULIPS yields also
reliable results for the flow about the NLR 7301 airfoil at its
supercritical design conditions.

COMPARISON OF TULIPS AND FTRANC
NLR7301,K=. 068, PITCHING .40C,
MACH = 0.721 ALPHA = -0.19 (deg), DALPHA = 0.5 (deg)

-16.0-1-
16.0-r-

1.50-
-CPL

h H

Fig. 3 Comparison of calculated distributions of pressure coefficients
of the NLR 7301 airfoil at supercritical conditions for reduced frequency
k = 0.068.

COMPARISON OF TULIPS, FTRANC AND EXPERIMENT
NACA64A010 AMES, K=0.10, PITCHING .25C
MACH = 0.796, ALPHA=-0.10(DEG) ,DALPHA=1.0(DEG)

_ _ _ _ _ FTRANC

A NACA-EXPERIMENT

0.90-
-CPU

Fig. 4 Comparison of experimental and calculated distributions of
pressure coefficients of the NACA 64A010 (Ames) airfoil for reduced
frequency k = 0.10.

Comparison of Calculated Full-Potential Results
and Experimental Data

Having investigated the accuracy of TULIPS and FTRANC,
it is interesting to see how the results of these codes compare
with experimental data.
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NLR7301,K=0.181, PITCHING .40C
MACH=0.721,ALPHA=-0.19(DEG),DALPHA=0.5(DEG)

- —— — FTRANC
A NLR-EXPERIMENT
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Fig. 5 Comparison of experimental and calculated distributions of
pressure coefficients of the NLR 7301 airfoil at supercritical conditions
for reduced frequency k = 0.181.

NACA 64A010 Airfoil
Figure 4 shows a comparison of calculated and measured7

mean steady and first harmonic pressure coefficients at k =
0.10 at the upper and lower sides. Except for peak values, the
agreement between theories and experiment is fair.

NLR 7301 Airfoil
Figure 5 compares calculated and measured mean steady

and first harmonic pressure coefficients at the upper and lower
sides at k = 0.168. Except for the first harmonic pressure
coefficients at the upper side, the correlation is reasonable. At
the shock trajectory, the TULIPS results have a better correla-
tion with respect to the mean steady pressure coefficients. The
poorer agreement for the unsteady pressures at the upper side
is probably due to wind-tunnel wall interference. This inter-
ference is not observed in the steady data because, in the

experiments, Mach number and incidence were tuned to com-
pensate for steady wall interference. This steady compensa-
tion, however, seems insufficient for the unsteady data and
might even have an adverse effect on the comparison.

Conclusions
The application of the time-integration TULIPS method

and the time-linearized FTRANC method to transonic flow
permits the following conclusions:

1) For the NACA 64A010 airfoil, good agreement has been
observed between the TULIPS and FTRANC results. There-
fore, the calculated results are highly reliable and are consid-
ered as valuable contributions to the database being set up for
these configurations.

2) For the supercritical NLR 7301 airfoil in its transonic
design conditions, the agreement between the TULIPS and
FTRANC results is less satisfactory. It is likely that this case
exceeds the range of applicability of the FTRANC time-lin-
earized method.

3) Calculated results of the unsteady full-potential methods
compare reasonably well with the experimental data for the
NACA 64A010 airfoil in transonic flow. For the supercritical
NLR 7301 airfoil, this is true for the mean steady data and the
subsonic unsteady data at the lower side. The unsteady data at
the upper side deviates substantially. Unsteady wind tunnel
wall interference effects seem to contribute much to this.
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